//@HEADER // ************************************************************************ // // Kokkos v. 4.0 // Copyright (2022) National Technology & Engineering // Solutions of Sandia, LLC (NTESS). // // Under the terms of Contract DE-NA0003525 with NTESS, // the U.S. Government retains certain rights in this software. // // Part of Kokkos, under the Apache License v2.0 with LLVM Exceptions. // See https://kokkos.org/LICENSE for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //@HEADER #include #include #include "Benchmark_Context.hpp" #include "PerfTest_Category.hpp" namespace Test { template struct HexGrad { using execution_space = DeviceType; using size_type = typename execution_space::size_type; using self_type = HexGrad; // 3D array : ( ParallelWork , Space , Node ) enum { NSpace = 3, NNode = 8 }; using elem_coord_type = Kokkos::View; using elem_grad_type = Kokkos::View; elem_coord_type coords; elem_grad_type grad_op; enum { FLOPS = 318 }; // = 3 * ( 18 + 8 * 11 ) }; enum { READS = 18 }; enum { WRITES = 18 }; HexGrad(const elem_coord_type& arg_coords, const elem_grad_type& arg_grad_op) : coords(arg_coords), grad_op(arg_grad_op) {} KOKKOS_INLINE_FUNCTION static void grad(const CoordScalarType x[], const CoordScalarType z[], GradScalarType grad_y[]) { const GradScalarType R42 = (x[3] - x[1]); const GradScalarType R52 = (x[4] - x[1]); const GradScalarType R54 = (x[4] - x[3]); const GradScalarType R63 = (x[5] - x[2]); const GradScalarType R83 = (x[7] - x[2]); const GradScalarType R86 = (x[7] - x[5]); const GradScalarType R31 = (x[2] - x[0]); const GradScalarType R61 = (x[5] - x[0]); const GradScalarType R74 = (x[6] - x[3]); const GradScalarType R72 = (x[6] - x[1]); const GradScalarType R75 = (x[6] - x[4]); const GradScalarType R81 = (x[7] - x[0]); const GradScalarType t1 = (R63 + R54); const GradScalarType t2 = (R61 + R74); const GradScalarType t3 = (R72 + R81); const GradScalarType t4 = (R86 + R42); const GradScalarType t5 = (R83 + R52); const GradScalarType t6 = (R75 + R31); // Calculate Y gradient from X and Z data grad_y[0] = (z[1] * t1) - (z[2] * R42) - (z[3] * t5) + (z[4] * t4) + (z[5] * R52) - (z[7] * R54); grad_y[1] = (z[2] * t2) + (z[3] * R31) - (z[0] * t1) - (z[5] * t6) + (z[6] * R63) - (z[4] * R61); grad_y[2] = (z[3] * t3) + (z[0] * R42) - (z[1] * t2) - (z[6] * t4) + (z[7] * R74) - (z[5] * R72); grad_y[3] = (z[0] * t5) - (z[1] * R31) - (z[2] * t3) + (z[7] * t6) + (z[4] * R81) - (z[6] * R83); grad_y[4] = (z[5] * t3) + (z[6] * R86) - (z[7] * t2) - (z[0] * t4) - (z[3] * R81) + (z[1] * R61); grad_y[5] = (z[6] * t5) - (z[4] * t3) - (z[7] * R75) + (z[1] * t6) - (z[0] * R52) + (z[2] * R72); grad_y[6] = (z[7] * t1) - (z[5] * t5) - (z[4] * R86) + (z[2] * t4) - (z[1] * R63) + (z[3] * R83); grad_y[7] = (z[4] * t2) - (z[6] * t1) + (z[5] * R75) - (z[3] * t6) - (z[2] * R74) + (z[0] * R54); } KOKKOS_INLINE_FUNCTION void operator()(size_type ielem) const { GradScalarType g[NNode]; const CoordScalarType x[NNode] = {coords(ielem, 0, 0), coords(ielem, 0, 1), coords(ielem, 0, 2), coords(ielem, 0, 3), coords(ielem, 0, 4), coords(ielem, 0, 5), coords(ielem, 0, 6), coords(ielem, 0, 7)}; const CoordScalarType y[NNode] = {coords(ielem, 1, 0), coords(ielem, 1, 1), coords(ielem, 1, 2), coords(ielem, 1, 3), coords(ielem, 1, 4), coords(ielem, 1, 5), coords(ielem, 1, 6), coords(ielem, 1, 7)}; const CoordScalarType z[NNode] = {coords(ielem, 2, 0), coords(ielem, 2, 1), coords(ielem, 2, 2), coords(ielem, 2, 3), coords(ielem, 2, 4), coords(ielem, 2, 5), coords(ielem, 2, 6), coords(ielem, 2, 7)}; grad(z, y, g); grad_op(ielem, 0, 0) = g[0]; grad_op(ielem, 0, 1) = g[1]; grad_op(ielem, 0, 2) = g[2]; grad_op(ielem, 0, 3) = g[3]; grad_op(ielem, 0, 4) = g[4]; grad_op(ielem, 0, 5) = g[5]; grad_op(ielem, 0, 6) = g[6]; grad_op(ielem, 0, 7) = g[7]; grad(x, z, g); grad_op(ielem, 1, 0) = g[0]; grad_op(ielem, 1, 1) = g[1]; grad_op(ielem, 1, 2) = g[2]; grad_op(ielem, 1, 3) = g[3]; grad_op(ielem, 1, 4) = g[4]; grad_op(ielem, 1, 5) = g[5]; grad_op(ielem, 1, 6) = g[6]; grad_op(ielem, 1, 7) = g[7]; grad(y, x, g); grad_op(ielem, 2, 0) = g[0]; grad_op(ielem, 2, 1) = g[1]; grad_op(ielem, 2, 2) = g[2]; grad_op(ielem, 2, 3) = g[3]; grad_op(ielem, 2, 4) = g[4]; grad_op(ielem, 2, 5) = g[5]; grad_op(ielem, 2, 6) = g[6]; grad_op(ielem, 2, 7) = g[7]; } //-------------------------------------------------------------------------- struct Init { using execution_space = typename self_type::execution_space; elem_coord_type coords; Init(const elem_coord_type& arg_coords) : coords(arg_coords) {} KOKKOS_INLINE_FUNCTION void operator()(size_type ielem) const { coords(ielem, 0, 0) = 0.; coords(ielem, 1, 0) = 0.; coords(ielem, 2, 0) = 0.; coords(ielem, 0, 1) = 1.; coords(ielem, 1, 1) = 0.; coords(ielem, 2, 1) = 0.; coords(ielem, 0, 2) = 1.; coords(ielem, 1, 2) = 1.; coords(ielem, 2, 2) = 0.; coords(ielem, 0, 3) = 0.; coords(ielem, 1, 3) = 1.; coords(ielem, 2, 3) = 0.; coords(ielem, 0, 4) = 0.; coords(ielem, 1, 4) = 0.; coords(ielem, 2, 4) = 1.; coords(ielem, 0, 5) = 1.; coords(ielem, 1, 5) = 0.; coords(ielem, 2, 5) = 1.; coords(ielem, 0, 6) = 1.; coords(ielem, 1, 6) = 1.; coords(ielem, 2, 6) = 1.; coords(ielem, 0, 7) = 0.; coords(ielem, 1, 7) = 1.; coords(ielem, 2, 7) = 1.; } }; //-------------------------------------------------------------------------- static double test(const int count) { elem_coord_type coord("coord", count); elem_grad_type grad("grad", count); // Execute the parallel kernels on the arrays: Kokkos::parallel_for(count, Init(coord)); execution_space().fence(); Kokkos::Timer timer; Kokkos::parallel_for(count, HexGrad(coord, grad)); execution_space().fence(); return timer.seconds(); } }; template static void HexGrad_Benchmark(benchmark::State& state) { const auto parallel_work_length = state.range(0); for (auto _ : state) { const auto time = HexGrad::test( parallel_work_length); state.SetIterationTime(time); state.counters["Count"] = benchmark::Counter(parallel_work_length); state.counters["Time normalized"] = benchmark::Counter(time / parallel_work_length); } } BENCHMARK(HexGrad_Benchmark) ->ArgName("count") ->ArgsProduct({ benchmark::CreateRange(1 << 10, 1 << 19, 2), }) ->UseManualTime() ->Iterations(5); } // namespace Test