//@HEADER // ************************************************************************ // // Kokkos v. 4.0 // Copyright (2022) National Technology & Engineering // Solutions of Sandia, LLC (NTESS). // // Under the terms of Contract DE-NA0003525 with NTESS, // the U.S. Government retains certain rights in this software. // // Part of Kokkos, under the Apache License v2.0 with LLVM Exceptions. // See https://kokkos.org/LICENSE for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //@HEADER #include #include #include namespace Test { namespace stdalgos { namespace TransformIncScan { namespace KE = Kokkos::Experimental; template struct UnifDist; template <> struct UnifDist { using dist_type = std::uniform_real_distribution; std::mt19937 m_gen; dist_type m_dist; UnifDist() : m_dist(0.05, 1.2) { m_gen.seed(1034343); } double operator()() { return m_dist(m_gen); } }; template <> struct UnifDist { using dist_type = std::uniform_int_distribution; std::mt19937 m_gen; dist_type m_dist; UnifDist() : m_dist(1, 3) { m_gen.seed(1034343); } int operator()() { return m_dist(m_gen); } }; template void fill_zero(ViewType view) { Kokkos::parallel_for(view.extent(0), FillZeroFunctor(view)); } template void fill_view(ViewType dest_view, const std::string& name) { using value_type = typename ViewType::value_type; using exe_space = typename ViewType::execution_space; const std::size_t ext = dest_view.extent(0); using aux_view_t = Kokkos::View; aux_view_t aux_view("aux_view", ext); auto v_h = create_mirror_view(Kokkos::HostSpace(), aux_view); UnifDist randObj; if (name == "empty") { // no op } else if (name == "one-element") { assert(v_h.extent(0) == 1); v_h(0) = static_cast(1); } else if (name == "two-elements-a") { assert(v_h.extent(0) == 2); v_h(0) = static_cast(1); v_h(1) = static_cast(2); } else if (name == "two-elements-b") { assert(v_h.extent(0) == 2); v_h(0) = static_cast(2); v_h(1) = static_cast(-1); } else if (name == "small-a") { assert(v_h.extent(0) == 9); v_h(0) = static_cast(3); v_h(1) = static_cast(1); v_h(2) = static_cast(4); v_h(3) = static_cast(1); v_h(4) = static_cast(5); v_h(5) = static_cast(9); v_h(6) = static_cast(2); v_h(7) = static_cast(6); v_h(8) = static_cast(2); } else if (name == "small-b") { assert(v_h.extent(0) >= 6); for (std::size_t i = 0; i < ext; ++i) { v_h(i) = randObj(); } v_h(5) = static_cast(-2); } else if (name == "medium" || name == "large") { for (std::size_t i = 0; i < ext; ++i) { v_h(i) = randObj(); } } else { throw std::runtime_error("invalid choice"); } Kokkos::deep_copy(aux_view, v_h); CopyFunctor F1(aux_view, dest_view); Kokkos::parallel_for("copy", dest_view.extent(0), F1); } // I had to write my own because std::transform_inclusive_scan is ONLY found // with std=c++17 template void my_host_transform_inclusive_scan(it1 first, it1 last, it2 dest, BopType bop, UopType uop) { if (first != last) { auto init = uop(*first); *dest = init; while (++first < last) { init = bop(uop(*first), init); *(++dest) = init; } } } template void my_host_transform_inclusive_scan(it1 first, it1 last, it2 dest, BopType bop, UopType uop, ValType init) { if (first != last) { init = bop(uop(*first), init); *dest = init; while (++first < last) { init = bop(uop(*first), init); *(++dest) = init; } } } template void verify_data(ViewType1 data_view, // contains data ViewType2 test_view, // the view to test Args... args /* by value on purpose*/) { //! always careful because views might not be deep copyable auto data_view_dc = create_deep_copyable_compatible_clone(data_view); auto data_view_h = create_mirror_view_and_copy(Kokkos::HostSpace(), data_view_dc); using gold_view_value_type = typename ViewType2::value_type; Kokkos::View gold_h( "goldh", data_view.extent(0)); my_host_transform_inclusive_scan(KE::cbegin(data_view_h), KE::cend(data_view_h), KE::begin(gold_h), args...); auto test_view_dc = create_deep_copyable_compatible_clone(test_view); auto test_view_h = create_mirror_view_and_copy(Kokkos::HostSpace(), test_view_dc); if (test_view_h.extent(0) > 0) { for (std::size_t i = 0; i < test_view_h.extent(0); ++i) { if (std::is_same::value) { ASSERT_EQ(gold_h(i), test_view_h(i)); } else { const auto error = std::abs(gold_h(i) - test_view_h(i)); ASSERT_LT(error, 1e-10) << i << " " << std::setprecision(15) << error << static_cast(test_view_h(i)) << " " << static_cast(gold_h(i)); } } } } template struct TimesTwoUnaryFunctor { KOKKOS_INLINE_FUNCTION ValueType operator()(const ValueType& a) const { return (a * ValueType(2)); } }; template struct SumBinaryFunctor { KOKKOS_INLINE_FUNCTION ValueType operator()(const ValueType& a, const ValueType& b) const { return (a + b); } }; std::string value_type_to_string(int) { return "int"; } std::string value_type_to_string(double) { return "double"; } template void run_single_scenario(const InfoType& scenario_info, Args... args /* by value on purpose*/) { const auto name = std::get<0>(scenario_info); const std::size_t view_ext = std::get<1>(scenario_info); auto view_dest = create_view(Tag{}, view_ext, "transform_inclusive_scan"); auto view_from = create_view(Tag{}, view_ext, "transform_inclusive_scan"); fill_view(view_from, name); { fill_zero(view_dest); auto r = KE::transform_inclusive_scan(exespace(), KE::cbegin(view_from), KE::cend(view_from), KE::begin(view_dest), args...); ASSERT_EQ(r, KE::end(view_dest)); verify_data(view_from, view_dest, args...); } { fill_zero(view_dest); auto r = KE::transform_inclusive_scan( "label", exespace(), KE::cbegin(view_from), KE::cend(view_from), KE::begin(view_dest), args...); ASSERT_EQ(r, KE::end(view_dest)); verify_data(view_from, view_dest, args...); } { fill_zero(view_dest); auto r = KE::transform_inclusive_scan(exespace(), view_from, view_dest, args...); ASSERT_EQ(r, KE::end(view_dest)); verify_data(view_from, view_dest, args...); } { fill_zero(view_dest); auto r = KE::transform_inclusive_scan("label", exespace(), view_from, view_dest, args...); ASSERT_EQ(r, KE::end(view_dest)); verify_data(view_from, view_dest, args...); } Kokkos::fence(); } template void run_single_scenario_inplace(const InfoType& scenario_info, Args... args /* by value on purpose*/) { const auto name = std::get<0>(scenario_info); const std::size_t view_ext = std::get<1>(scenario_info); // since here we call the in-place operation, we need to use two views: // view1: filled according to scenario and is not modified // view2: filled according scenario and used for the in-place op // Therefore, after the op is done, view_2 should contain the // result of doing exclusive scan. // NOTE: view2 must be filled before every call to the algorithm // because the algorithm acts in place auto view_1 = create_view(Tag{}, view_ext, "transform_inclusive_scan_view_1"); fill_view(view_1, name); auto view_2 = create_view(Tag{}, view_ext, "transform_inclusive_scan_view_2"); { fill_view(view_2, name); auto r = KE::transform_inclusive_scan(exespace(), KE::cbegin(view_2), KE::cend(view_2), KE::begin(view_2), args...); ASSERT_EQ(r, KE::end(view_2)); verify_data(view_1, view_2, args...); } { fill_view(view_2, name); auto r = KE::transform_inclusive_scan("label", exespace(), KE::cbegin(view_2), KE::cend(view_2), KE::begin(view_2), args...); ASSERT_EQ(r, KE::end(view_2)); verify_data(view_1, view_2, args...); } { fill_view(view_2, name); auto r = KE::transform_inclusive_scan(exespace(), view_2, view_2, args...); ASSERT_EQ(r, KE::end(view_2)); verify_data(view_1, view_2, args...); } { fill_view(view_2, name); auto r = KE::transform_inclusive_scan("label", exespace(), view_2, view_2, args...); ASSERT_EQ(r, KE::end(view_2)); verify_data(view_1, view_2, args...); } Kokkos::fence(); } template void run_all_scenarios() { const std::map scenarios = { {"empty", 0}, {"one-element", 1}, {"two-elements-a", 2}, {"two-elements-b", 2}, {"small-a", 9}, {"small-b", 13}, {"medium", 1103}, {"large", 10513}}; for (const auto& it : scenarios) { using uop_t = TimesTwoUnaryFunctor; using bop_t = SumBinaryFunctor; run_single_scenario(it, bop_t(), uop_t()); run_single_scenario(it, bop_t(), uop_t(), ValueType{0}); run_single_scenario(it, bop_t(), uop_t(), ValueType{1}); run_single_scenario(it, bop_t(), uop_t(), ValueType{2}); run_single_scenario(it, bop_t(), uop_t(), ValueType{-1}); run_single_scenario(it, bop_t(), uop_t(), ValueType{-2}); run_single_scenario_inplace(it, bop_t(), uop_t()); run_single_scenario_inplace(it, bop_t(), uop_t(), ValueType{0}); run_single_scenario_inplace(it, bop_t(), uop_t(), ValueType{2}); run_single_scenario_inplace(it, bop_t(), uop_t(), ValueType{-2}); } } #if !defined KOKKOS_ENABLE_OPENMPTARGET TEST(std_algorithms_numeric_ops_test, transform_inclusive_scan) { run_all_scenarios(); run_all_scenarios(); run_all_scenarios(); run_all_scenarios(); } #endif template struct MultiplyFunctor { KOKKOS_INLINE_FUNCTION ValueType operator()(const ValueType& a, const ValueType& b) const { return (a * b); } }; TEST(std_algorithms_numeric_ops_test, transform_inclusive_scan_functor) { using value_type = KE::Impl::ValueWrapperForNoNeutralElement; auto test_lambda = [&](auto& functor) { value_type value1; functor.init(value1); ASSERT_EQ(value1.val, 0); ASSERT_EQ(value1.is_initial, true); value_type value2; value2.val = 1; value2.is_initial = false; functor.join(value1, value2); ASSERT_EQ(value1.val, 1); ASSERT_EQ(value1.is_initial, false); functor.init(value1); functor.join(value2, value1); ASSERT_EQ(value2.val, 1); ASSERT_EQ(value2.is_initial, false); functor.init(value2); functor.join(value2, value1); ASSERT_EQ(value2.val, 0); ASSERT_EQ(value2.is_initial, true); value1.val = 3; value1.is_initial = false; value2.val = 2; value2.is_initial = false; functor.join(value2, value1); ASSERT_EQ(value2.val, 6); ASSERT_EQ(value2.is_initial, false); }; int dummy = 0; using view_type = Kokkos::View; view_type dummy_view("dummy_view", 0); using unary_op_type = KE::Impl::StdNumericScanIdentityReferenceUnaryFunctor; { using functor_type = KE::Impl::ExeSpaceTransformInclusiveScanNoInitValueFunctor< exespace, int, int, view_type, view_type, MultiplyFunctor, unary_op_type>; functor_type functor(dummy_view, dummy_view, {}, {}); test_lambda(functor); } { using functor_type = KE::Impl::ExeSpaceTransformInclusiveScanWithInitValueFunctor< exespace, int, int, view_type, view_type, MultiplyFunctor, unary_op_type>; functor_type functor(dummy_view, dummy_view, {}, {}, dummy); test_lambda(functor); } } } // namespace TransformIncScan } // namespace stdalgos } // namespace Test