//@HEADER // ************************************************************************ // // Kokkos v. 4.0 // Copyright (2022) National Technology & Engineering // Solutions of Sandia, LLC (NTESS). // // Under the terms of Contract DE-NA0003525 with NTESS, // the U.S. Government retains certain rights in this software. // // Part of Kokkos, under the Apache License v2.0 with LLVM Exceptions. // See https://kokkos.org/LICENSE for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //@HEADER #include #include #include namespace Test { namespace stdalgos { namespace IncScan { namespace KE = Kokkos::Experimental; template struct UnifDist; template <> struct UnifDist { using dist_type = std::uniform_real_distribution; std::mt19937 m_gen; dist_type m_dist; UnifDist() : m_dist(0.05, 1.2) { m_gen.seed(1034343); } double operator()() { return m_dist(m_gen); } }; template <> struct UnifDist { using dist_type = std::uniform_int_distribution; std::mt19937 m_gen; dist_type m_dist; UnifDist() : m_dist(1, 3) { m_gen.seed(1034343); } int operator()() { return m_dist(m_gen); } }; template <> struct UnifDist { using dist_type = std::uniform_real_distribution; std::mt19937 m_gen; dist_type m_dist; UnifDist() : m_dist(0.05, 1.2) { m_gen.seed(1034343); } CustomValueType operator()() { return m_dist(m_gen); } }; template void fill_view(ViewType dest_view, const std::string& name) { using value_type = typename ViewType::value_type; using exe_space = typename ViewType::execution_space; const std::size_t ext = dest_view.extent(0); using aux_view_t = Kokkos::View; aux_view_t aux_view("aux_view", ext); auto v_h = create_mirror_view(Kokkos::HostSpace(), aux_view); UnifDist randObj; if (name == "empty") { // no op } else if (name == "one-element") { v_h(0) = static_cast(1); } else if (name == "two-elements-a") { v_h(0) = static_cast(1); v_h(1) = static_cast(2); } else if (name == "two-elements-b") { v_h(0) = static_cast(2); v_h(1) = static_cast(-1); } else if (name == "small-a") { for (std::size_t i = 0; i < ext; ++i) { v_h(i) = static_cast(i + 1); } } else if (name == "small-b") { for (std::size_t i = 0; i < ext; ++i) { v_h(i) = randObj(); } v_h(5) = static_cast(-2); } else if (name == "medium-a" || name == "medium-b" || name == "large") { for (std::size_t i = 0; i < ext; ++i) { v_h(i) = randObj(); } } else { throw std::runtime_error("invalid choice"); } Kokkos::deep_copy(aux_view, v_h); CopyFunctor F1(aux_view, dest_view); Kokkos::parallel_for("copy", dest_view.extent(0), F1); } // my own because std::inclusive_scan is ONLY found with std=c++17 template void my_host_inclusive_scan(it1 first, it1 last, it2 dest, BinOp bop) { if (first != last) { auto init = *first; *dest = init; while (++first < last) { init = bop(*first, init); *(++dest) = init; } } } template void my_host_inclusive_scan(it1 first, it1 last, it2 dest, BinOp bop, ValType init) { if (first != last) { init = bop(*first, init); *dest = init; while (++first < last) { init = bop(*first, init); *(++dest) = init; } } } template struct MultiplyFunctor { KOKKOS_INLINE_FUNCTION ValueType operator()(const ValueType& a, const ValueType& b) const { return (a * b); } }; template struct SumFunctor { KOKKOS_INLINE_FUNCTION ValueType operator()(const ValueType& a, const ValueType& b) const { return (a + b); } }; struct VerifyData { template void operator()(ViewType1 data_view, // contains data ViewType2 test_view, // the view to test BinaryOp bop, Args... args /* copy on purpose */) { //! always careful because views might not be deep copyable auto data_view_dc = create_deep_copyable_compatible_clone(data_view); auto data_view_h = create_mirror_view_and_copy(Kokkos::HostSpace(), data_view_dc); using gold_view_value_type = typename ViewType2::value_type; Kokkos::View gold_h( "goldh", data_view.extent(0)); my_host_inclusive_scan(KE::cbegin(data_view_h), KE::cend(data_view_h), KE::begin(gold_h), bop, args...); auto test_view_dc = create_deep_copyable_compatible_clone(test_view); auto test_view_h = create_mirror_view_and_copy(Kokkos::HostSpace(), test_view_dc); const auto ext = test_view_h.extent(0); if (ext > 0) { for (std::size_t i = 0; i < ext; ++i) { if (std::is_same::value) { ASSERT_EQ(gold_h(i), test_view_h(i)); } else { const auto error = std::abs(static_cast(gold_h(i) - test_view_h(i))); ASSERT_LT(error, 1e-10) << i << " " << std::setprecision(15) << error << static_cast(test_view_h(i)) << " " << static_cast(gold_h(i)); } } } } template void operator()(ViewType1 data_view, // contains data ViewType2 test_view) // the view to test { using value_type = typename ViewType1::non_const_value_type; (*this)(data_view, test_view, SumFunctor()); } }; std::string value_type_to_string(int) { return "int"; } std::string value_type_to_string(double) { return "double"; } template void run_single_scenario(const InfoType& scenario_info, Args... args /* copy on purpose */) { const auto name = std::get<0>(scenario_info); const std::size_t view_ext = std::get<1>(scenario_info); auto view_dest = create_view(Tag{}, view_ext, "inclusive_scan"); auto view_from = create_view(Tag{}, view_ext, "inclusive_scan"); fill_view(view_from, name); // view_dest is filled with zeros before calling the algorithm everytime to // ensure the algorithm does something meaningful { fill_zero(view_dest); auto r = KE::inclusive_scan(exespace(), KE::cbegin(view_from), KE::cend(view_from), KE::begin(view_dest), args...); ASSERT_EQ(r, KE::end(view_dest)); VerifyData()(view_from, view_dest, args...); } { fill_zero(view_dest); auto r = KE::inclusive_scan("label", exespace(), KE::cbegin(view_from), KE::cend(view_from), KE::begin(view_dest), args...); ASSERT_EQ(r, KE::end(view_dest)); VerifyData()(view_from, view_dest, args...); } { fill_zero(view_dest); auto r = KE::inclusive_scan(exespace(), view_from, view_dest, args...); ASSERT_EQ(r, KE::end(view_dest)); VerifyData()(view_from, view_dest, args...); } { fill_zero(view_dest); auto r = KE::inclusive_scan("label", exespace(), view_from, view_dest, args...); ASSERT_EQ(r, KE::end(view_dest)); VerifyData()(view_from, view_dest, args...); } Kokkos::fence(); } template void run_single_scenario_inplace(const InfoType& scenario_info, Args... args /* copy on purpose */) { const auto name = std::get<0>(scenario_info); const std::size_t view_ext = std::get<1>(scenario_info); // since here we call the in-place operation, we need to use two views: // view1: filled according to what the scenario asks for and is not modified // view2: filled according to what the scenario asks for and used for the // in-place op Therefore, after the op is done, view_2 should contain the // result of doing exclusive scan NOTE: view2 is filled below every time // because the algorithm acts in place auto view1 = create_view(Tag{}, view_ext, "inclusive_scan_inplace_view1"); fill_view(view1, name); auto view2 = create_view(Tag{}, view_ext, "inclusive_scan_inplace_view2"); { fill_view(view2, name); auto r = KE::inclusive_scan(exespace(), KE::cbegin(view2), KE::cend(view2), KE::begin(view2), args...); ASSERT_EQ(r, KE::end(view2)); VerifyData()(view1, view2, args...); } { fill_view(view2, name); auto r = KE::inclusive_scan("label", exespace(), KE::cbegin(view2), KE::cend(view2), KE::begin(view2), args...); ASSERT_EQ(r, KE::end(view2)); VerifyData()(view1, view2, args...); } { fill_view(view2, name); auto r = KE::inclusive_scan(exespace(), view2, view2, args...); ASSERT_EQ(r, KE::end(view2)); VerifyData()(view1, view2, args...); } { fill_view(view2, name); auto r = KE::inclusive_scan("label", exespace(), view2, view2, args...); ASSERT_EQ(r, KE::end(view2)); VerifyData()(view1, view2, args...); } Kokkos::fence(); } template void run_inclusive_scan_all_scenarios() { const std::map scenarios = { {"empty", 0}, {"one-element", 1}, {"two-elements-a", 2}, {"two-elements-b", 2}, {"small-a", 9}, {"small-b", 13}, {"medium-a", 313}, {"medium-b", 1103}, {"large", 10513}}; for (const auto& it : scenarios) { run_single_scenario(it); run_single_scenario_inplace(it); #if !defined KOKKOS_ENABLE_OPENMPTARGET // the sum custom op is always run using sum_binary_op = SumFunctor; sum_binary_op sbop; run_single_scenario(it, sbop); run_single_scenario(it, sbop, ValueType{0}); run_single_scenario(it, sbop, ValueType{1}); run_single_scenario(it, sbop, ValueType{-2}); run_single_scenario(it, sbop, ValueType{3}); run_single_scenario_inplace(it, sbop, ValueType{0}); run_single_scenario_inplace(it, sbop, ValueType{-2}); // custom multiply only for small views to avoid overflows if (it.first == "small-a" || it.first == "small-b") { using mult_binary_op = MultiplyFunctor; mult_binary_op mbop; run_single_scenario(it, mbop); run_single_scenario(it, mbop, ValueType{0}); run_single_scenario(it, mbop, ValueType{1}); run_single_scenario(it, mbop, ValueType{-2}); run_single_scenario(it, mbop, ValueType{3}); run_single_scenario_inplace(it, mbop); run_single_scenario_inplace(it, mbop, ValueType{0}); run_single_scenario_inplace(it, mbop, ValueType{-2}); } #endif } } TEST(std_algorithms_numeric_ops_test, inclusive_scan) { run_inclusive_scan_all_scenarios(); run_inclusive_scan_all_scenarios(); run_inclusive_scan_all_scenarios(); run_inclusive_scan_all_scenarios(); run_inclusive_scan_all_scenarios(); run_inclusive_scan_all_scenarios(); } TEST(std_algorithms_numeric_ops_test, inclusive_scan_functor) { using view_type = Kokkos::View; view_type dummy_view("dummy_view", 0); using functor_type = Kokkos::Experimental::Impl::InclusiveScanDefaultFunctor< exespace, int, int, view_type, view_type>; functor_type functor(dummy_view, dummy_view); using value_type = functor_type::value_type; value_type value1; functor.init(value1); ASSERT_EQ(value1.val, 0); ASSERT_EQ(value1.is_initial, true); value_type value2; value2.val = 1; value2.is_initial = false; functor.join(value1, value2); ASSERT_EQ(value1.val, 1); ASSERT_EQ(value1.is_initial, false); functor.init(value1); functor.join(value2, value1); ASSERT_EQ(value2.val, 1); ASSERT_EQ(value2.is_initial, false); functor.init(value2); functor.join(value2, value1); ASSERT_EQ(value2.val, 0); ASSERT_EQ(value2.is_initial, true); value1.val = 1; value1.is_initial = false; value2.val = 2; value2.is_initial = false; functor.join(value2, value1); ASSERT_EQ(value2.val, 3); ASSERT_EQ(value2.is_initial, false); } } // namespace IncScan } // namespace stdalgos } // namespace Test