//@HEADER // ************************************************************************ // // Kokkos v. 4.0 // Copyright (2022) National Technology & Engineering // Solutions of Sandia, LLC (NTESS). // // Under the terms of Contract DE-NA0003525 with NTESS, // the U.S. Government retains certain rights in this software. // // Part of Kokkos, under the Apache License v2.0 with LLVM Exceptions. // See https://kokkos.org/LICENSE for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //@HEADER #include #include namespace Test { namespace stdalgos { namespace FindEnd { namespace KE = Kokkos::Experimental; template struct UnifDist; template <> struct UnifDist { using dist_type = std::uniform_int_distribution; std::mt19937 m_gen; dist_type m_dist; UnifDist() : m_dist(0, 20) { m_gen.seed(1034343); } UnifDist(int a, int b) : m_dist(a, b) { m_gen.seed(234343); } int operator()() { return m_dist(m_gen); } }; template void fill_view(ViewType dest_view, const std::string& name) { using value_type = typename ViewType::value_type; using exe_space = typename ViewType::execution_space; const std::size_t ext = dest_view.extent(0); using aux_view_t = Kokkos::View; aux_view_t aux_view("aux_view", ext); auto v_h = create_mirror_view(Kokkos::HostSpace(), aux_view); if (name == "empty") { // no op } else if (name == "one-element-a") { v_h(0) = static_cast(1); } else if (name == "one-element-b") { v_h(0) = static_cast(2); } else if (name == "two-elements-a") { v_h(0) = static_cast(1); v_h(1) = static_cast(2); } else if (name == "two-elements-b") { v_h(0) = static_cast(2); v_h(1) = static_cast(-1); } else if (name == "three-elements-a") { v_h(0) = static_cast(-1); v_h(1) = static_cast(2); v_h(2) = static_cast(2); } else if (name == "three-elements-b") { v_h(0) = static_cast(3); v_h(1) = static_cast(1); v_h(2) = static_cast(3); } else if (name == "four-elements-a") { v_h(0) = static_cast(-1); v_h(1) = static_cast(2); v_h(2) = static_cast(2); v_h(3) = static_cast(4); } else if (name == "four-elements-b") { v_h(0) = static_cast(1); v_h(1) = static_cast(1); v_h(2) = static_cast(1); v_h(3) = static_cast(1); } else if (name == "small-a") { v_h(0) = static_cast(0); v_h(1) = static_cast(4); v_h(2) = static_cast(1); v_h(3) = static_cast(2); v_h(4) = static_cast(-1); v_h(5) = static_cast(4); v_h(6) = static_cast(1); v_h(7) = static_cast(2); v_h(8) = static_cast(2); v_h(9) = static_cast(4); v_h(10) = static_cast(1); } else if (name == "small-b") { v_h(0) = static_cast(1); v_h(1) = static_cast(2); v_h(2) = static_cast(3); v_h(3) = static_cast(1); v_h(4) = static_cast(-1); v_h(5) = static_cast(-2); v_h(6) = static_cast(0); v_h(7) = static_cast(1); v_h(8) = static_cast(2); v_h(9) = static_cast(2); v_h(10) = static_cast(5); v_h(11) = static_cast(9); v_h(12) = static_cast(8); } else { UnifDist randObj; for (std::size_t i = 0; i < ext; ++i) { v_h(i) = randObj(); } } Kokkos::deep_copy(aux_view, v_h); CopyFunctor F1(aux_view, dest_view); Kokkos::parallel_for("copy", dest_view.extent(0), F1); } template auto create_seq(ViewType data_view, std::size_t seq_extent) { // we need to specify a sequence that we search for // within the original view/range. // to do this, rather than doing something purely random, // we use the view with the data, and select a subsequence. auto data_view_h = create_host_space_copy(data_view); const auto data_view_extent = data_view.extent(0); using value_type = typename ViewType::value_type; using exe_space = typename ViewType::execution_space; using seq_view_t = Kokkos::View; seq_view_t seq_view("seq_view", seq_extent); auto seq_view_h = create_mirror_view(Kokkos::HostSpace(), seq_view); // when the target sequence is of same size as view, just fill // sequeunce with all values of the view if (seq_extent == data_view_extent) { for (std::size_t i = 0; i < seq_extent; ++i) { seq_view_h(i) = data_view_h(i); } } else { // if target sequence to fill is smaller, then we need to pick // a starting point to copy data from to make the the sequence. // we pick randomly between 0 and data_view_extent - seq_extent. // and fill the sequeunce data with the values copied from data view. using dist_type = std::uniform_int_distribution; std::random_device r; // from this: // https://stackoverflow.com/questions/34490599/c11-how-to-set-seed-using-random std::seed_seq seed{r(), r(), r(), r(), r(), r()}; std::mt19937 gen(seed); dist_type dist(0, data_view_extent - seq_extent); const auto start = dist(gen); // std::cout << "start= " << start << "\n"; for (std::size_t i = 0; i < seq_extent; ++i) { seq_view_h(i) = data_view_h(start + i); // std::cout << "i= " << i << " " << seq_view_h(i) << "\n"; } } Kokkos::deep_copy(seq_view, seq_view_h); return seq_view; } // search is only avai from c++17, so I have to put it here template ForwardIt1 my_std_search(ForwardIt1 first, ForwardIt1 last, ForwardIt2 s_first, ForwardIt2 s_last, BinaryPredicate p) { for (;; ++first) { ForwardIt1 it = first; for (ForwardIt2 s_it = s_first;; ++it, ++s_it) { if (s_it == s_last) { return first; } if (it == last) { return last; } if (!p(*it, *s_it)) { break; } } } } // only avai from c++17, so I have to put it here template ForwardIt1 my_std_find_end(ForwardIt1 first, ForwardIt1 last, ForwardIt2 s_first, ForwardIt2 s_last, BinaryPredicate p) { if (s_first == s_last) { return last; } ForwardIt1 result = last; while (true) { ForwardIt1 new_result = my_std_search(first, last, s_first, s_last, p); if (new_result == last) { break; } else { result = new_result; first = result; ++first; } } return result; } template ForwardIt1 my_std_find_end(ForwardIt1 first, ForwardIt1 last, ForwardIt2 s_first, ForwardIt2 s_last) { using value_type1 = typename ForwardIt1::value_type; using value_type2 = typename ForwardIt2::value_type; using pred_t = IsEqualFunctor; return my_std_find_end(first, last, s_first, s_last, pred_t()); } std::string value_type_to_string(int) { return "int"; } std::string value_type_to_string(double) { return "double"; } template void print_scenario_details(const std::string& name, std::size_t seq_ext) { std::cout << "find_end: default predicate: " << name << ", " << "find_end_seq_ext = " << seq_ext << ", " << view_tag_to_string(Tag{}) << " " << value_type_to_string(ValueType()) << std::endl; } template void print_scenario_details(const std::string& name, std::size_t seq_ext, Predicate pred) { (void)pred; std::cout << "find_end: custom predicate: " << name << ", " << "find_end_seq_ext = " << seq_ext << ", " << view_tag_to_string(Tag{}) << " " << value_type_to_string(ValueType()) << std::endl; } template void run_single_scenario(const InfoType& scenario_info, std::size_t seq_ext, Args... args) { const auto name = std::get<0>(scenario_info); const std::size_t view_ext = std::get<1>(scenario_info); // print_scenario_details(name, seq_ext, args...); auto view = create_view(Tag{}, view_ext, "find_end_test_view"); fill_view(view, name); auto s_view = create_seq(view, seq_ext); // run std auto view_h = create_host_space_copy(view); auto s_view_h = create_host_space_copy(s_view); auto stdrit = my_std_find_end(KE::cbegin(view_h), KE::cend(view_h), KE::cbegin(s_view_h), KE::cend(s_view_h), args...); { auto myrit = KE::find_end(exespace(), KE::cbegin(view), KE::cend(view), KE::cbegin(s_view), KE::cend(s_view), args...); const auto mydiff = myrit - KE::cbegin(view); const auto stddiff = stdrit - KE::cbegin(view_h); // std::cout << "result : " << mydiff << " " << stddiff << std::endl; ASSERT_EQ(mydiff, stddiff); } { auto myrit = KE::find_end("label", exespace(), KE::cbegin(view), KE::cend(view), KE::cbegin(s_view), KE::cend(s_view), args...); const auto mydiff = myrit - KE::cbegin(view); const auto stddiff = stdrit - KE::cbegin(view_h); ASSERT_EQ(mydiff, stddiff); } { auto myrit = KE::find_end(exespace(), view, s_view, args...); const auto mydiff = myrit - KE::begin(view); const auto stddiff = stdrit - KE::cbegin(view_h); ASSERT_EQ(mydiff, stddiff); } { auto myrit = KE::find_end("label", exespace(), view, s_view, args...); const auto mydiff = myrit - KE::begin(view); const auto stddiff = stdrit - KE::cbegin(view_h); ASSERT_EQ(mydiff, stddiff); } Kokkos::fence(); } template void run_all_scenarios() { const std::map scenarios = {{"empty", 0}, {"one-element-a", 1}, {"one-element-b", 1}, {"two-elements-a", 2}, {"two-elements-b", 2}, {"three-elements-a", 3}, {"three-elements-b", 3}, {"four-elements-a", 4}, {"four-elements-b", 4}, {"small-a", 11}, {"small-b", 13}, {"medium-a", 11103}, {"medium-b", 21103}, {"large-a", 101513}, {"large-b", 100111}}; const std::vector seq_extents = { 0, 1, 2, 3, 4, 5, 8, 11, 15, 31, 113, 523, 1035, 11103}; // for each scenario we want to run "find_end" // for a set of sequences of various extents for (const auto& it : scenarios) { for (const auto& it2 : seq_extents) { // only run if view is larger or equal than sequence if (it.second >= it2) { run_single_scenario(it, it2); using func_t = IsEqualFunctor; run_single_scenario(it, it2, func_t()); } } } } TEST(std_algorithms_non_mod_seq_ops, find_end) { run_all_scenarios(); run_all_scenarios(); } } // namespace FindEnd } // namespace stdalgos } // namespace Test