//@HEADER // ************************************************************************ // // Kokkos v. 4.0 // Copyright (2022) National Technology & Engineering // Solutions of Sandia, LLC (NTESS). // // Under the terms of Contract DE-NA0003525 with NTESS, // the U.S. Government retains certain rights in this software. // // Part of Kokkos, under the Apache License v2.0 with LLVM Exceptions. // See https://kokkos.org/LICENSE for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //@HEADER #ifndef KOKKOS_UNITTEST_TASKSCHEDULER_HPP #define KOKKOS_UNITTEST_TASKSCHEDULER_HPP #include #if defined(KOKKOS_ENABLE_TASKDAG) #include #include #include #include //============================================================================== // {{{1 namespace TestTaskScheduler { namespace { inline long eval_fib(long n) { constexpr long mask = 0x03; long fib[4] = {0, 1, 1, 2}; for (long i = 2; i <= n; ++i) { fib[i & mask] = fib[(i - 1) & mask] + fib[(i - 2) & mask]; } return fib[n & mask]; } } // namespace template struct TestFib { using sched_type = Scheduler; using future_type = Kokkos::BasicFuture; using value_type = long; future_type fib_m1; future_type fib_m2; const value_type n; KOKKOS_INLINE_FUNCTION TestFib(const value_type arg_n) : fib_m1(), fib_m2(), n(arg_n) {} KOKKOS_INLINE_FUNCTION void operator()(typename sched_type::member_type& member, value_type& result) { #if 0 printf( "\nTestFib(%ld) %d %d\n", n, int( !fib_m1.is_null() ), int( !fib_m2.is_null() ) ); #endif auto& sched = member.scheduler(); if (n < 2) { result = n; } else if (!fib_m2.is_null() && !fib_m1.is_null()) { result = fib_m1.get() + fib_m2.get(); } else { // Spawn new children and respawn myself to sum their results. // Spawn lower value at higher priority as it has a shorter // path to completion. fib_m2 = Kokkos::task_spawn( Kokkos::TaskSingle(sched, Kokkos::TaskPriority::High), TestFib(n - 2)); fib_m1 = Kokkos::task_spawn(Kokkos::TaskSingle(sched), TestFib(n - 1)); Kokkos::BasicFuture dep[] = {fib_m1, fib_m2}; Kokkos::BasicFuture fib_all = sched.when_all(dep, 2); if (!fib_m2.is_null() && !fib_m1.is_null() && !fib_all.is_null()) { // High priority to retire this branch. Kokkos::respawn(this, fib_all, Kokkos::TaskPriority::High); } else { #if 1 printf( "TestFib(%ld) insufficient memory alloc_capacity(%d) task_max(%d) " "task_accum(%ld)\n", n, 0 // sched.allocation_capacity() , 0 // sched.allocated_task_count_max() , 0l // sched.allocated_task_count_accum() ); #endif Kokkos::abort("TestFib insufficient memory"); } } } static void run(int i, size_t MemoryCapacity = 16000) { using memory_space = typename sched_type::memory_space; enum { MinBlockSize = 64 }; enum { MaxBlockSize = 1024 }; enum { SuperBlockSize = 4096 }; sched_type root_sched(memory_space(), MemoryCapacity, MinBlockSize, std::min(size_t(MaxBlockSize), MemoryCapacity), std::min(size_t(SuperBlockSize), MemoryCapacity)); { future_type f = Kokkos::host_spawn(Kokkos::TaskSingle(root_sched), TestFib(i)); Kokkos::wait(root_sched); ASSERT_EQ(eval_fib(i), f.get()); } ASSERT_EQ(root_sched.queue().allocation_count(), 0); #if 0 fprintf( stdout, "\nTestFib::run(%d) spawn_size(%d) when_all_size(%d) alloc_capacity(%d) task_max(%d) task_accum(%ld)\n" , i , int(root_sched.template spawn_allocation_size()) , int(root_sched.when_all_allocation_size(2)) , root_sched.allocation_capacity() , root_sched.allocated_task_count_max() , root_sched.allocated_task_count_accum() ); fflush( stdout ); #endif } }; } // namespace TestTaskScheduler // end TestFib }}}1 //============================================================================== //---------------------------------------------------------------------------- //============================================================================== // {{{1 namespace TestTaskScheduler { template struct TestTaskDependence { using sched_type = Scheduler; using future_type = Kokkos::BasicFuture; using accum_type = Kokkos::View; using value_type = void; accum_type m_accum; long m_count; KOKKOS_INLINE_FUNCTION TestTaskDependence(long n, const accum_type& arg_accum) : m_accum(arg_accum), m_count(n) {} KOKKOS_INLINE_FUNCTION void operator()(typename sched_type::member_type& member) { auto& sched = member.scheduler(); static constexpr int CHUNK = 8; const int n = CHUNK < m_count ? CHUNK : m_count; if (1 < m_count) { const int increment = (m_count + n - 1) / n; future_type f = sched.when_all(n, [this, &member, increment](int i) { const long inc = increment; const long begin = i * inc; const long count = begin + inc < m_count ? inc : m_count - begin; return Kokkos::task_spawn(Kokkos::TaskSingle(member.scheduler()), TestTaskDependence(count, m_accum)); }); m_count = 0; Kokkos::respawn(this, f); } else if (1 == m_count) { Kokkos::atomic_increment(&m_accum()); } } static void run(int n) { using memory_space = typename sched_type::memory_space; enum { MemoryCapacity = 16000 }; enum { MinBlockSize = 64 }; enum { MaxBlockSize = 1024 }; enum { SuperBlockSize = 4096 }; sched_type sched(memory_space(), MemoryCapacity, MinBlockSize, MaxBlockSize, SuperBlockSize); accum_type accum("accum"); typename accum_type::HostMirror host_accum = Kokkos::create_mirror_view(accum); Kokkos::host_spawn(Kokkos::TaskSingle(sched), TestTaskDependence(n, accum)); Kokkos::wait(sched); Kokkos::deep_copy(host_accum, accum); ASSERT_EQ(host_accum(), n); } }; } // namespace TestTaskScheduler // end TestTaskDependence }}}1 //============================================================================== //---------------------------------------------------------------------------- namespace TestTaskScheduler { template struct TestTaskTeam { // enum { SPAN = 8 }; enum { SPAN = 33 }; // enum { SPAN = 1 }; using value_type = void; using sched_type = Scheduler; using future_type = Kokkos::BasicFuture; using ExecSpace = typename sched_type::execution_space; using view_type = Kokkos::View; future_type future; view_type parfor_result; view_type parreduce_check; view_type parscan_result; view_type parscan_check; const long nvalue; KOKKOS_INLINE_FUNCTION TestTaskTeam(const view_type& arg_parfor_result, const view_type& arg_parreduce_check, const view_type& arg_parscan_result, const view_type& arg_parscan_check, const long arg_nvalue) : future(), parfor_result(arg_parfor_result), parreduce_check(arg_parreduce_check), parscan_result(arg_parscan_result), parscan_check(arg_parscan_check), nvalue(arg_nvalue) {} KOKKOS_INLINE_FUNCTION void operator()(typename sched_type::member_type& member) { auto& sched = member.scheduler(); const long end = nvalue + 1; // begin = max(end - SPAN, 0); const long begin = 0 < end - SPAN ? end - SPAN : 0; if (0 < begin && future.is_null()) { if (member.team_rank() == 0) { future = Kokkos::task_spawn( Kokkos::TaskTeam(sched), TestTaskTeam(parfor_result, parreduce_check, parscan_result, parscan_check, begin - 1)); #if !defined(__HIP_DEVICE_COMPILE__) && !defined(__CUDA_ARCH__) assert(!future.is_null()); #endif Kokkos::respawn(this, future); } return; } Kokkos::parallel_for(Kokkos::TeamThreadRange(member, begin, end), [&](int i) { parfor_result[i] = i; }); // Test parallel_reduce without join. long tot = 0; long expected = (begin + end - 1) * (end - begin) * 0.5; Kokkos::parallel_reduce( Kokkos::TeamThreadRange(member, begin, end), [&](int i, long& res) { res += parfor_result[i]; }, tot); Kokkos::parallel_for(Kokkos::TeamThreadRange(member, begin, end), [&](int i) { parreduce_check[i] = expected - tot; }); // Test parallel_reduce with join. tot = 0; Kokkos::parallel_reduce( Kokkos::TeamThreadRange(member, begin, end), [&](int i, long& res) { res += parfor_result[i]; }, Kokkos::Sum(tot)); Kokkos::parallel_for(Kokkos::TeamThreadRange(member, begin, end), [&](int i) { parreduce_check[i] += expected - tot; }); // Test parallel_scan. // Exclusive scan. Kokkos::parallel_scan(Kokkos::TeamThreadRange(member, begin, end), [&](int i, long& val, const bool final) { if (final) { parscan_result[i] = val; } val += i; }); // Wait for 'parscan_result' before testing it. member.team_barrier(); if (member.team_rank() == 0) { for (long i = begin; i < end; ++i) { parscan_check[i] = (i * (i - 1) - begin * (begin - 1)) * 0.5 - parscan_result[i]; } } // Don't overwrite 'parscan_result' until it has been tested. member.team_barrier(); // Inclusive scan. Kokkos::parallel_scan(Kokkos::TeamThreadRange(member, begin, end), [&](int i, long& val, const bool final) { val += i; if (final) { parscan_result[i] = val; } }); // Wait for 'parscan_result' before testing it. member.team_barrier(); if (member.team_rank() == 0) { for (long i = begin; i < end; ++i) { parscan_check[i] += (i * (i + 1) - begin * (begin - 1)) * 0.5 - parscan_result[i]; } } // ThreadVectorRange check. /* long result = 0; expected = ( begin + end - 1 ) * ( end - begin ) * 0.5; Kokkos::parallel_reduce( Kokkos::TeamThreadRange( member, 0, 1 ) , [&] ( const int i, long & outerUpdate ) { long sum_j = 0.0; Kokkos::parallel_reduce( Kokkos::ThreadVectorRange( member, end - begin ) , [&] ( const int j, long & innerUpdate ) { innerUpdate += begin + j; }, sum_j ); outerUpdate += sum_j; }, result ); Kokkos::parallel_for( Kokkos::TeamThreadRange( member, begin, end ) , [&] ( int i ) { parreduce_check[i] += result - expected; }); */ } static void run(long n) { const unsigned memory_capacity = 400000; enum { MinBlockSize = 64 }; enum { MaxBlockSize = 1024 }; enum { SuperBlockSize = 4096 }; sched_type root_sched(typename sched_type::memory_space(), memory_capacity, MinBlockSize, MaxBlockSize, SuperBlockSize); view_type root_parfor_result("parfor_result", n + 1); view_type root_parreduce_check("parreduce_check", n + 1); view_type root_parscan_result("parscan_result", n + 1); view_type root_parscan_check("parscan_check", n + 1); typename view_type::HostMirror host_parfor_result = Kokkos::create_mirror_view(root_parfor_result); typename view_type::HostMirror host_parreduce_check = Kokkos::create_mirror_view(root_parreduce_check); typename view_type::HostMirror host_parscan_result = Kokkos::create_mirror_view(root_parscan_result); typename view_type::HostMirror host_parscan_check = Kokkos::create_mirror_view(root_parscan_check); future_type f = Kokkos::host_spawn( Kokkos::TaskTeam(root_sched), TestTaskTeam(root_parfor_result, root_parreduce_check, root_parscan_result, root_parscan_check, n)); Kokkos::wait(root_sched); Kokkos::deep_copy(host_parfor_result, root_parfor_result); Kokkos::deep_copy(host_parreduce_check, root_parreduce_check); Kokkos::deep_copy(host_parscan_result, root_parscan_result); Kokkos::deep_copy(host_parscan_check, root_parscan_check); long error_count = 0; for (long i = 0; i <= n; ++i) { const long answer = i; if (host_parfor_result(i) != answer) { ++error_count; std::cerr << "TestTaskTeam::run ERROR parallel_for result(" << i << ") = " << host_parfor_result(i) << " != " << answer << std::endl; } if (host_parreduce_check(i) != 0) { ++error_count; std::cerr << "TestTaskTeam::run ERROR parallel_reduce check(" << i << ") = " << host_parreduce_check(i) << " != 0" << std::endl; } if (host_parscan_check(i) != 0) { ++error_count; std::cerr << "TestTaskTeam::run ERROR parallel_scan check(" << i << ") = " << host_parscan_check(i) << " != 0" << std::endl; } } ASSERT_EQ(0L, error_count); } }; template struct TestTaskTeamValue { enum { SPAN = 8 }; using value_type = long; using sched_type = Scheduler; using future_type = Kokkos::BasicFuture; using ExecSpace = typename sched_type::execution_space; using view_type = Kokkos::View; future_type future; view_type result; const long nvalue; KOKKOS_INLINE_FUNCTION TestTaskTeamValue(const view_type& arg_result, const long arg_nvalue) : future(), result(arg_result), nvalue(arg_nvalue) {} KOKKOS_INLINE_FUNCTION void operator()(typename sched_type::member_type const& member, value_type& final) { const long end = nvalue + 1; const long begin = 0 < end - SPAN ? end - SPAN : 0; auto& sched = member.scheduler(); if (0 < begin && future.is_null()) { if (member.team_rank() == 0) { future = sched.task_spawn(TestTaskTeamValue(result, begin - 1), Kokkos::TaskTeam); #if !defined(__HIP_DEVICE_COMPILE__) && !defined(__CUDA_ARCH__) assert(!future.is_null()); #endif sched.respawn(this, future); } return; } Kokkos::parallel_for(Kokkos::TeamThreadRange(member, begin, end), [&](int i) { result[i] = i + 1; }); if (member.team_rank() == 0) { final = result[nvalue]; } Kokkos::memory_fence(); } static void run(long n) { const unsigned memory_capacity = 100000; enum { MinBlockSize = 64 }; enum { MaxBlockSize = 1024 }; enum { SuperBlockSize = 4096 }; sched_type root_sched(typename sched_type::memory_space(), memory_capacity, MinBlockSize, MaxBlockSize, SuperBlockSize); view_type root_result("result", n + 1); typename view_type::HostMirror host_result = Kokkos::create_mirror_view(root_result); future_type fv = root_sched.host_spawn(TestTaskTeamValue(root_result, n), Kokkos::TaskTeam); Kokkos::wait(root_sched); Kokkos::deep_copy(host_result, root_result); if (fv.get() != n + 1) { std::cerr << "TestTaskTeamValue ERROR future = " << fv.get() << " != " << n + 1 << std::endl; } for (long i = 0; i <= n; ++i) { const long answer = i + 1; if (host_result(i) != answer) { std::cerr << "TestTaskTeamValue ERROR result(" << i << ") = " << host_result(i) << " != " << answer << std::endl; } } } }; } // namespace TestTaskScheduler //---------------------------------------------------------------------------- namespace TestTaskScheduler { template struct TestTaskSpawnWithPool { using sched_type = Scheduler; using future_type = Kokkos::BasicFuture; using value_type = void; using Space = typename sched_type::execution_space; int m_count; Kokkos::MemoryPool m_pool; KOKKOS_INLINE_FUNCTION TestTaskSpawnWithPool(const int& arg_count, const Kokkos::MemoryPool& arg_pool) : m_count(arg_count), m_pool(arg_pool) {} KOKKOS_INLINE_FUNCTION void operator()(typename sched_type::member_type& member) { if (m_count) { Kokkos::task_spawn(Kokkos::TaskSingle(member.scheduler()), TestTaskSpawnWithPool(m_count - 1, m_pool)); } } static void run() { using memory_space = typename sched_type::memory_space; enum { MemoryCapacity = 16000 }; enum { MinBlockSize = 64 }; enum { MaxBlockSize = 1024 }; enum { SuperBlockSize = 4096 }; sched_type sched(memory_space(), MemoryCapacity, MinBlockSize, MaxBlockSize, SuperBlockSize); using other_memory_space = typename Space::memory_space; Kokkos::MemoryPool pool(other_memory_space(), 10000, 100, 200, 1000); auto f = Kokkos::host_spawn(Kokkos::TaskSingle(sched), TestTaskSpawnWithPool(3, pool)); Kokkos::wait(sched); } }; } // namespace TestTaskScheduler //---------------------------------------------------------------------------- namespace TestTaskScheduler { template struct TestTaskCtorsDevice { using sched_type = Scheduler; using future_type = Kokkos::BasicFuture; using value_type = void; using Space = typename sched_type::execution_space; int m_count; KOKKOS_INLINE_FUNCTION TestTaskCtorsDevice(const int& arg_count) : m_count(arg_count) {} KOKKOS_INLINE_FUNCTION void operator()(typename sched_type::member_type& member) { // Note: Default construction on the device is not allowed if (m_count == 4) { Kokkos::task_spawn(Kokkos::TaskSingle(member.scheduler()), TestTaskCtorsDevice(m_count - 1)); } else if (m_count == 3) { sched_type s = member.scheduler(); // move construct s = member.scheduler(); // move assignment Kokkos::task_spawn(Kokkos::TaskSingle(s), TestTaskCtorsDevice(m_count - 1)); } else if (m_count == 2) { sched_type s3 = member.scheduler(); // move construct from member.scheduler(); Kokkos::task_spawn(Kokkos::TaskSingle(s3), TestTaskCtorsDevice(m_count - 1)); } else if (m_count == 1) { sched_type s = member.scheduler(); // move construct from member.scheduler(); sched_type s2 = s; // copy construct from s Kokkos::task_spawn(Kokkos::TaskSingle(s2), TestTaskCtorsDevice(m_count - 1)); } } static void run() { using memory_space = typename sched_type::memory_space; enum { MemoryCapacity = 16000 }; enum { MinBlockSize = 64 }; enum { MaxBlockSize = 1024 }; enum { SuperBlockSize = 4096 }; sched_type sched(memory_space(), MemoryCapacity, MinBlockSize, MaxBlockSize, SuperBlockSize); auto f = Kokkos::host_spawn(Kokkos::TaskSingle(sched), TestTaskCtorsDevice(4)); Kokkos::wait(sched); // TODO assertions and sanity checks } }; } // namespace TestTaskScheduler //---------------------------------------------------------------------------- namespace TestTaskScheduler { template struct TestMultipleDependence { using sched_type = Scheduler; using future_bool = Kokkos::BasicFuture; using future_int = Kokkos::BasicFuture; using value_type = bool; using execution_space = typename sched_type::execution_space; enum : int { NPerDepth = 6 }; enum : int { NFanout = 3 }; // xlC doesn't like incomplete aggregate constructors, so we have do do this // manually: KOKKOS_INLINE_FUNCTION TestMultipleDependence(int depth, int max_depth) : m_depth(depth), m_max_depth(max_depth), m_dep() { // gcc 4.8 has an internal compile error when I give the initializer in the // class, so I have do do it here for (int i = 0; i < NPerDepth; ++i) { m_result_futures[i] = future_bool(); } } // xlC doesn't like incomplete aggregate constructors, so we have do do this // manually: KOKKOS_INLINE_FUNCTION TestMultipleDependence(int depth, int max_depth, future_int dep) : m_depth(depth), m_max_depth(max_depth), m_dep(dep) { // gcc 4.8 has an internal compile error when I give the initializer in the // class, so I have do do it here for (int i = 0; i < NPerDepth; ++i) { m_result_futures[i] = future_bool(); } } int m_depth; int m_max_depth; future_int m_dep; future_bool m_result_futures[NPerDepth]; struct TestCheckReady { future_int m_dep; using value_type = bool; KOKKOS_INLINE_FUNCTION void operator()(typename Scheduler::member_type&, bool& value) { // if it was "transiently" ready, this could be false even if we made it a // dependence of this task value = m_dep.is_ready(); return; } }; struct TestComputeValue { using value_type = int; KOKKOS_INLINE_FUNCTION void operator()(typename Scheduler::member_type&, int& result) { double value = 1; // keep this one busy for a while for (int i = 0; i < 10000; ++i) { value += i * i / 7.138 / value; } // Do something irrelevant result = int(value) << 2; return; } }; KOKKOS_INLINE_FUNCTION void operator()(typename sched_type::member_type& member, bool& value) { if (m_result_futures[0].is_null()) { if (m_depth == 0) { // Spawn one expensive task at the root m_dep = Kokkos::task_spawn(Kokkos::TaskSingle(member.scheduler()), TestComputeValue{}); } // Then check for it to be ready in a whole bunch of other tasks that race int n_checkers = NPerDepth; if (m_depth < m_max_depth) { n_checkers -= NFanout; for (int i = n_checkers; i < NPerDepth; ++i) { m_result_futures[i] = Kokkos::task_spawn(Kokkos::TaskSingle(member.scheduler()), TestMultipleDependence( m_depth + 1, m_max_depth, m_dep)); } } for (int i = 0; i < n_checkers; ++i) { m_result_futures[i] = member.scheduler().spawn( Kokkos::TaskSingle(m_dep), TestCheckReady{m_dep}); } auto done = member.scheduler().when_all(m_result_futures, NPerDepth); Kokkos::respawn(this, done); return; } else { value = true; for (int i = 0; i < NPerDepth; ++i) { value = value && !m_result_futures[i].is_null(); if (value) { value = value && m_result_futures[i].get(); } } return; } } static void run(int depth) { using memory_space = typename sched_type::memory_space; enum { MemoryCapacity = 1 << 30 }; enum { MinBlockSize = 64 }; enum { MaxBlockSize = 1024 }; enum { SuperBlockSize = 4096 }; sched_type sched(memory_space(), MemoryCapacity, MinBlockSize, MaxBlockSize, SuperBlockSize); auto f = Kokkos::host_spawn(Kokkos::TaskSingle(sched), TestMultipleDependence(0, depth)); Kokkos::wait(sched); ASSERT_TRUE(f.get()); } }; } // namespace TestTaskScheduler //---------------------------------------------------------------------------- #define KOKKOS_PP_CAT_IMPL(x, y) x##y #define KOKKOS_TEST_WITH_SUFFIX(x, y) KOKKOS_PP_CAT_IMPL(x, y) #define TEST_SCHEDULER_SUFFIX _deprecated #define TEST_SCHEDULER Kokkos::DeprecatedTaskScheduler #include "TestTaskScheduler_single.hpp" #undef TEST_SCHEDULER #undef TEST_SCHEDULER_SUFFIX #define TEST_SCHEDULER_SUFFIX _deprecated_multiple #define TEST_SCHEDULER Kokkos::DeprecatedTaskSchedulerMultiple #include "TestTaskScheduler_single.hpp" #undef TEST_SCHEDULER #undef TEST_SCHEDULER_SUFFIX #define TEST_SCHEDULER_SUFFIX _single #define TEST_SCHEDULER Kokkos::TaskScheduler #include "TestTaskScheduler_single.hpp" #undef TEST_SCHEDULER #undef TEST_SCHEDULER_SUFFIX #define TEST_SCHEDULER_SUFFIX _multiple #define TEST_SCHEDULER Kokkos::TaskSchedulerMultiple #include "TestTaskScheduler_single.hpp" #undef TEST_SCHEDULER #undef TEST_SCHEDULER_SUFFIX // KOKKOS WORKAROUND WIN32: Theses tests hang with msvc #ifndef _WIN32 #define TEST_SCHEDULER_SUFFIX _chase_lev #define TEST_SCHEDULER Kokkos::ChaseLevTaskScheduler #include "TestTaskScheduler_single.hpp" #undef TEST_SCHEDULER #undef TEST_SCHEDULER_SUFFIX #endif #if 0 #define TEST_SCHEDULER_SUFFIX _fixed_mempool #define TEST_SCHEDULER \ Kokkos::SimpleTaskScheduler< \ TEST_EXECSPACE, \ Kokkos::Impl::SingleTaskQueue< \ TEST_EXECSPACE, \ Kokkos::Impl::default_tasking_memory_space_for_execution_space_t< \ TEST_EXECSPACE>, \ Kokkos::Impl::TaskQueueTraitsLockBased, \ Kokkos::Impl::FixedBlockSizeMemoryPool< \ Kokkos::Device< \ TEST_EXECSPACE, \ Kokkos::Impl:: \ default_tasking_memory_space_for_execution_space_t< \ TEST_EXECSPACE>>, \ 128, 16>>> #include "TestTaskScheduler_single.hpp" #undef TEST_SCHEDULER #undef TEST_SCHEDULER_SUFFIX #define TEST_SCHEDULER_SUFFIX _fixed_mempool_multiple #define TEST_SCHEDULER \ Kokkos::SimpleTaskScheduler< \ TEST_EXECSPACE, \ Kokkos::Impl::MultipleTaskQueue< \ TEST_EXECSPACE, \ Kokkos::Impl::default_tasking_memory_space_for_execution_space_t< \ TEST_EXECSPACE>, \ Kokkos::Impl::TaskQueueTraitsLockBased, \ Kokkos::Impl::FixedBlockSizeMemoryPool< \ Kokkos::Device< \ TEST_EXECSPACE, \ Kokkos::Impl:: \ default_tasking_memory_space_for_execution_space_t< \ TEST_EXECSPACE>>, \ 128, 16>>> #include "TestTaskScheduler_single.hpp" #undef TEST_SCHEDULER #undef TEST_SCHEDULER_SUFFIX #endif #undef KOKKOS_TEST_WITH_SUFFIX #undef KOKKOS_PP_CAT_IMPL #endif // #if defined( KOKKOS_ENABLE_TASKDAG ) #endif // #ifndef KOKKOS_UNITTEST_TASKSCHEDULER_HPP